Kernel

In informatica, il kernel costituisce il nucleo di un sistema operativo. Si tratta di un software avente il compito di fornire ai processi in esecuzione sull'elaboratore un accesso sicuro e controllato all'hardware. Dato che possono esserne eseguiti simultaneamente più di uno, il kernel ha anche la responsabilità di assegnare una porzione di tempo-macchina e di accesso all'hardware a ciascun programma (multitasking).

Naturalmente, un kernel non è strettamente necessario per far funzionare un elaboratore. I programmi possono essere infatti direttamente caricati ed eseguiti sulla macchina, a patto che i loro sviluppatori ritengano necessario fare a meno del supporto del sistema operativo: questa era la modalità di funzionamento tipica dei primi elaboratori, che venivano resettati prima di eseguire un nuovo programma. In un secondo tempo, alcuni software ancillari come i program loader e i debugger venivano lanciati da una ROM o fatti risiedere in memoria durante le transizioni dell'elaboratore da un'applicazione all'altra: essi hanno formato di fatto la base per la creazione dei primi sistemi operativi.


Introduzione


L'accesso diretto all'hardware può essere anche molto complesso, quindi i kernel usualmente implementano uno o più tipi di astrazione dell'hardware. Queste astrazioni servono a "nascondere" la complessità e a fornire un'interfaccia pulita ed uniforme all'hardware sottostante, in modo da semplificare il lavoro degli sviluppatori. I kernel si possono classificare - in base al grado di astrazione dell'hardware - in quattro categorie:


Kernel monolitici


L'approccio monolitico definisce un'interfaccia virtuale di alto livello sull'hardware, con un set di primitive o chiamate di sistema per implementare servizi di sistema operativo come gestione dei processi, multitasking e gestione della memoria, in diversi moduli che girano in modalità supervisore.

Anche se ogni modulo che serve queste operazioni è separato dal resto, l'integrazione del codice è molto stretta e difficile da fare in maniera corretta e, siccome tutti i moduli operano nello stesso spazio, un bug in uno di essi può bloccare l'intero sistema. Tuttavia, quando l'implementazione è completa e sicura, la stretta integrazione interna dei componenti rende un buon kernel monolitico estremamente efficiente.

Il più grosso svantaggio dei kernel monolitici è tuttavia che non è possibile aggiungere un nuovo dispositivo hardware senza aggiungere il relativo modulo al kernel, operazione che richiede la ricompilazione del kernel. In alternativa è possibile compilare un kernel con tutti i moduli di supporto all'hardware, ingigantendo però le sue dimensioni. Tuttavia i kernel monolitici più moderni come il Kernel Linux e FreeBSD possono caricare dei moduli in fase di esecuzione, a patto che questi fossero previsti in fase di compilazione, permettendo così l'estensione del kernel quando richiesto, mantenendo al contempo le dimensioni del codice nello spazio del kernel al minimo indispensabile.

Rappresentazione grafica di un kernel monolitico

Esempi di kernel monolitici:


Microkernel


L'approccio microkernel consiste nel definire delle macchine virtuali molto semplici sopra l'hardware, con un set di primitive o chiamate di sistema per implementare servizi minimali del sistema operativo quali gestione dei thread, spazi di indirizzamento o comunicazione interprocesso.

L'obiettivo principale è la separazione delle implementazioni dei servizi di base dalle strutture operative del sistema. Per esempio, il processo di blocco (locking) dell'Input/Output può essere implementato come modulo server a livello utente. Questi moduli a livello utente, usati per fornire servizi di alto livello al sistema, sono modulari e semplificano la struttura e la progettazione del kernel. Un servizio server che smette di funzionare non provoca il blocco dell'intero sistema, e può essere riavviato indipendentemente dal resto.

Rappresentazione grafica di un microkernel.


Microkernel atipici


Vi sono alcuni tipi di microkernel che non possono essere definiti esattamente come tali, perché non implementano alcune funzioni come i servizi server sebbene siano caratterizzati dalle altre prerogative che definiscono i microkernel. Il più noto di essi è Exec, abbreviazione di Executive Multitasking (e il suo diretto successore ExecSG) che è il kernel di AmigaOS.


Kernel monolitici e microkernel a confronto


I kernel monolitici sono spesso preferiti ai microkernel a causa del minor livello di complessità nel controllo dei codici di controllo in uno spazio di indirizzamento. Per esempio XNU, il kernel di Mac OS X, è basato su un kernel Mach 3.0 e componenti BSD nello stesso spazio di indirizzamento in modo da abbattere i tempi di latenza tipici dei microkernel. XNU risulta così un kernel dalle notevoli prestazioni poiché basato in parte su una soluzione ibrida e non puo' in ogni caso essere considerato un microkernel. Nella documentazione ufficiale di Apple si fa chiaro riferimento a XNU come Kernel Monolitico Modulare.

A partire dai primi anni '90 i kernel monolitici sono considerati obsoleti. Il progetto di Linux come kernel monolitico anziché come microkernel è stato uno degli argomenti della famosa guerra di religione fra Linus Torvalds (il creatore di Linux) e Andrew Tanenbaum (celebre docente di sistemi operativi, autore di Minix) - in rete sono disponibili maggiori dettagli.

In realtà vi sono ragioni da entrambe le parti.

I kernel monolitici tendono ad essere più semplici da progettare correttamente, e possono quindi evolversi più rapidamente di un sistema basato su microkernel. Ci sono storie di successi in entrambi gli schieramenti. I microkernel sono spesso usati in sistemi embedded in applicazioni mission critical di automazione robotica o di medicina, a causa del fatto che i componenti del sistema risiedono in aree di memoria separate, private e protette. Ciò non è possibile con i kernel monolitici, nemmeno con i moderni moduli caricabili.

A parte il kernel Mach, che è il più noto microkernel di uso generico, molti altri microkernel sono stati sviluppati con scopi specifici. L3 in particolare è stato creato per dimostrare che i microkernel non sono necessariamente lenti. La famiglia di microkernel L4, successori di L3, dispongono di una implementazione chiamata Fiasco in grado di eseguire il Kernel Linux accanto agli altri processi di L4 in spazi di indirizzamento separati.

QNX è un sistema operativo presente sulle scene dai primi anni '80 e dispone di una implementazione a microkernel davvero minimalista. Questo sistema ha avuto molto più successo di Mach nel raggiungere gli obiettivi del paradigma a microkernel. È usato in situazioni in cui al software non è concesso di sbagliare, ad esempio nei bracci robotici dello space shuttle o in macchine che lavorano il vetro dove un errore anche piccolo può costare centinaia di migliaia di Euro.

In molti credono che, siccome Mach ha fallito nel compito di risolvere tutti i problemi per i quali i microkernel erano stati concepiti, l'intera tecnologia microkernel sia fallimentare ed inutile. Invece i sostenitori dei microkernel sostengono che questa sia una concezione poco aperta mentalmente e che sia diventata così popolare da essere ormai accettata come verità..


Kernel ibridi (microkernel modificati)


I kernel ibridi sono essenzialmente dei microkernel che hanno del codice "non essenziale" al livello di spazio del kernel in modo che questo codice possa girare più rapidamente che se fosse implementato ad alto livello. Questo fu un compromesso adottato da molti sviluppatori di sistemi operativi prima che fosse dimostrato che i microkernel puri potevano invece avere performance elevate. Molti sistemi operativi moderni rientrano in questa categoria: Microsoft Windows è l'esempio più noto. Anche XNU, il kernel di Mac OS X, è di fatto un microkernel modificato, per via dell'inclusione di codice BSD in un kernel basato su Mach. DragonFly BSD è stato il primo sistema BSD non basato su Mach ad adottare l'architettura a kernel ibrido.

Alcune persone confondono il termine "kernel ibrido" con i kernel monolitici che possono caricare dei moduli dopo il boot. Questo non è corretto, poiché "ibrido" implica che il kernel in questione condivida concetti architetturali e meccanismi tipici sia dei kernel monolitici che dei microkernel, specialmente il passaggio di messaggi e la migrazione di porzioni di codice "non essenziale" a più alto livello, mantenendo a livello kernel solo il codice necessario per ragioni di prestazioni.

Esempi di kernel ibridi:


Esokernel


Gli esokernel, conosciuti anche come "sistemi operativi verticali", sono un approccio radicalmente differente alla progettazione dei sistemi operativi. L'idea centrale è "separare la protezione dalla gestione".

L'idea che sta dietro è che nessuno sa come rendere efficiente l'uso dell'hardware disponibile meglio di uno sviluppatore, quindi l'obiettivo è dargli la possibilità di prendere le decisioni. Gli esokernel sono estremamente piccoli e compatti, in quanto le loro funzionalità sono arbitrariamente limitate alla protezione e al multiplexing delle risorse.

I kernel "classici" (sia monolitici che microkernel) astraggono l'hardware, nascondendo le risorse dietro a un livello di astrazione dell'hardware (hardware abstraction layer o HAL), o dietro a server "sicuri". In questi sistemi "classici" ad esempio, se viene allocata della memoria il programma non può sapere in quale pagina fisica questa verrà riservata dal sistema operativo, e se viene scritto un file non c'è modo di sapere direttamente in quale settore del disco è stato allocato. È questo il livello di astrazione che un esokernel cerca di evitare. Esso permette ad un'applicazione di richiedere aree specifiche di memoria, settori specifici su disco e così via, e si assicura solamente che le risorse richieste siano disponibili e che le applicazioni vi possano accedere.

Dato che un esokernel fornisce un'interfaccia davvero a basso livello all'hardware, mancando di qualsiasi funzionalità di alto livello tipica degli altri sistemi operativi, esso è accompagnato da un sistema operativo-libreria (in gergo libOS) che si interfaccia con l'esokernel sottostante fornendo quindi agli sviluppatori di applicazioni le funzionalità di un sistema operativo completo.

Tutto ciò ha un'importante implicazione: è possibile avere diversi libOS sul sistema. Se, per esempio, si installa un libOS che esporta un'API Unix e uno che esporta un'API Windows, è possibile eseguire simultaneamente applicazioni compilate per UNIX e per Windows. Lo sviluppo dei libOS avviene a livello utente, senza reboots, debug su console e in piena protezione della memoria.

Al momento gli esokernel sono più che altro dei progetti di ricerca e non sono usati in sistemi operativi commerciali. Un esempio di sistema basato su esokernel è Nemesis, sviluppato dall'Università di Cambridge, dall'Università di Glasgow, da Citrix Systems e dall'Istituto Svedese di Informatica. Anche il MIT ha sviluppato diversi sistemi basati su esokernel.

Rappresentazione grafica di un Exokernel


No Kernel


Il software cosiddetto "no kernel" non ha l'obbligo di essere limitato ad un unico entry point che sia oltretutto centralizzato. Un esempio è dato da progetti come TUNES e UnununiumOS, che intendono creare un sistema operativo privo di kernel.